- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Borer, Elizabeth_T (1)
-
Hobbie, Sarah_E (1)
-
Schroeder, Katie_M (1)
-
Seabloom, Eric_W (1)
-
Wilcots, Megan_E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Anthropogenic activities add more reactive nitrogen (N) to the environment than all natural sources combined, and the fate of this N is of environmental concern. If N that is deposited on terrestrial ecosystems through atmospheric deposition is retained in plant tissues or soil organic matter, it could stimulate carbon (C) storage in plant biomass or soils. However, added N also could increase soil inorganic N concentrations and leaching, potentially polluting watersheds, particularly in areas with low-N soils and/or a high propensity for leaching, such as sandy or arid areas. Here, we assessed N allocation and retention across a 13-year experimental N addition gradient in a temperate grassland. We found that N accumulation decreased significantly at mid- to high levels of N addition compared to the Control, such that ecosystem N pools were equivalent across a 10 g m−2 year−1range of annual N addition rates (0–10 g N m−2 year−1), which spans most of the global range of N deposition. Nitrogen addition increased plant tissue percent N, but the total pool of N did not increase because of reduced plant biomass, particularly in roots. Nitrogen addition also increased soil inorganic N concentrations. Our results indicate that N addition is unlikely to increase grassland N pools, particularly in sandy or low-fertility ecosystems with a high potential for leaching because high application rates lead to N saturation, and additional inputs are lost.more » « less
An official website of the United States government
